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We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We
consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular
density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ
a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at
the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the
steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an
integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a
steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance
can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear
density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase
steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike)
layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere
model, the granulate is fluidized within the “solid” layers: the granular temperature is nonzero there, and there
is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear
flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem

of selection of m remains open.
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I. INTRODUCTION

In spite of extensive experimental and theoretical studies
of dense granular flows, a theoretical description of these
flows remains challenging [1]. Multiparticle contacts and
friction, intrinsic in slow dense flows, invalidate the kinetic
theory [2,3]. Furthermore, even rapid dense flows (that is,
flows dominated by binary collisions) present significant dif-
ficulties for analysis. Dilute and moderately dense flows of
monodisperse inelastic hard sphere fluids are describable, for
not too high inelasticity of collisions, by Navier-Stokes hy-
drodynamics [3], which can be derived in a systematic way
from the kinetic theory: a one-particle kinetic equation prop-
erly generalized to account for inelastic collisions [2,3]. Hy-
drodynamic equations, that is conservation laws for the mass
and momentum of the granulate, and a balance equation for
the energy, may still be valid, for a hard sphere fluid, at
higher densities, after the disorder-order transition occurs.
However, the respective constitutive relations are not deriv-
able from a kinetic equation anymore.

In this work we attempt to address this difficulty and sug-
gest a possible hydrodynamic description of a sheared rapid
granular flow that exhibits crystallization. Shear-induced or-
dering in a dense granular medium has attracted much recent
attention. It was investigated experimentally (usually for
slow flows) by many groups [4—6]. The crystallization dy-
namics in inelastic hard sphere fluids has been also exten-
sively studied in molecular dynamics (MD) simulations
[7.8]. In this work we will be dealing with an idealized
model of inelastic particle collisions characterized by a con-
stant coefficient of normal restitution r, and focus on a plane
shear flow.
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The present work is a next step in a series of recent at-
tempts of extending granular hydrodynamics of inelastic
hard sphere fluids to high densities [9-11]. Grossman et al.
[9] investigated a prototypical system of inelastic hard disks
at zero gravity, placed in a two-dimensional rectangular box,
one wall of which served as a “thermal” wall. Grossman et
al. suggested an equation of state, granular heat conductivity,
and inelastic energy loss rate which interpolated between the
dilute limit and the close vicinity of the hexagonal close
packing, where free-volume arguments are available. The
density profiles, obtained by solving the hydrostatic equa-
tions numerically, were in good agreement with the results of
MD simulations [9].

Meerson et al. [11] considered a similar two-dimensional
granular system, but with gravity. The system was driven
from below by a “thermal” base. Employing the constitutive
relations suggested by Grossman et al. [9], Meerson and co-
workers found steady-state density and temperature profiles
and observed good agreement with MD simulations, includ-
ing the region of the “levitating cluster”, where the density is
very close to that of hexagonal close packing [11].

Bocquet er al. [10] employed hydrodynamic equations to
model a granular shear flow where the density approached
the random close-packing density. They also compared their
theory with experiment in a circular Couette flow [10]. As a
shear flow was present, Bocquet and co-workers had to
specify, in addition to the rest of the constitutive relations,
the coefficient of shear viscosity. In the experiment the
granular temperature had been found to decrease more
slowly, with an increase of the distance from the shear sur-
face, than the velocity. To account for this finding, Bocquet
et al. assumed that the shear viscosity diverges more rapidly,
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at random close packing, than the rest of the transport coef-
ficients.

We employ in this work Navier-Stokes granular hydrody-
namics for a description of a steady crystallized shear flow of
an assembly of monodisperse inelastic hard spheres under
constant pressure. Our approach is similar to that taken by
Bocquet et al. [10], with two important differences. First, we
focus on the ordered crystalline phase which ends at the crys-
tal (hexagonal or face-centered cubic) close-packing density
®scc» Whereas Bocquet er al. considered the metastable dis-
ordered phase which ends at the random close packing den-
sity ¢,,- Second, we assume that the shear viscosity di-
verges at a smaller density than the rest of transport
coefficients, see below. This assumption brings about the
possibility of a two-phase steady flow. In general, a granular
shear flow reaches a steady state when the viscous heating
makes up for the energy dissipation via inelastic collisions.
As we show here, this balance can be achieved in different
ways, producing either a uniform shear flow, or a variety of
flows with nonlinear density, velocity, and temperature pro-
files. Working in the range of densities beyond the melting
point, we determine the phase diagram of dense steady flows
in terms of three parameters: an effective Mach number, a
scaled energy loss parameter, and an integer number m: the
number of half-oscillations in a mechanical analogy that ap-
pears in this problem. There are regions on this phase dia-
gram where two or more different steady flow solutions are
possible for the same values of the parameters. To get an
additional insight, we perform a linear stability analysis of
the uniform steady shear flow. Based on these results, we
suggest a plausible bifurcation diagram of the system which,
in some region of the parameter space, describes bistability
and hysteresis.

The rest of the paper is organized as follows. In Sec. II we
introduce our shear-induced crystallization scenario and the
governing hydrodynamic equations and constitutive rela-
tions. Section III describes our model of a zero-gravity
constant-pressure shear flow and focuses on the analysis of a
crystallized steady shear flow in different regimes. Section
IV presents a linear stability analysis of the uniform shear
flow solution and suggests a plausible bifurcation diagram of
the system. Details of the linear stability analysis are pre-
sented in the Appendix. Section V includes a brief discussion
and summary of our results.

II. PRESSURE-DENSITY DIAGRAM AND
HYDRODYNAMIC EQUATIONS

Figure 1 depicts, in the coordinates “volume fraction—
pressure”, the phase diagram of a homogeneous macroscopic
system of elastic hard spheres [12]. The volume fraction ¢
=(m/6)d’n (where n is the particle number density, and d is
the particle diameter) changes from zero to ¢fw=\e“57r/ 6
=(.74, the density of crystal (either hexagonal or face-
centered cubic) close packing, the densest possible packing
of spheres in three dimensions. The phase diagram includes
four branches. The disordered, or gas/liquid branch starts at
¢=0 and continues until the freezing point that occurs at ¢
=(.494. Then this branch splits into two branches. The hori-
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FIG. 1. Phase diagram of elastic hard sphere fluid, see the
text.

zontal (constant pressure) branch describes the coexistence
of the disordered and ordered phases. It starts at the freezing
point and ends at the melting point at ¢=0.545. At larger
volume fractions the system is in the ordered crystalline
phase that ends at the density of the crystal close packing
®scc- The last branch is a metastable extension of the gas/
fluid branch. It starts at the freezing point and ends at ran-
dom close packing at ¢,.,=0.64. Clearly, each branch is
described by a separate equation of state.

The phase diagram, presented in Fig. 1, appears in the
context of a homogeneous system in either equilibrium, or a
metastable state. Granular systems are usually inhomoge-
neous and, no less important, they are intrinsically far from
equilibrium, due to inelastic collisions between particles. We
will deal, however, with a small inelasticity of particle colli-
sions and, in the spirit of kinetic theory [2,3], assume that the
system is everywhere close to local thermodynamic equilib-
rium, so the phase diagram (and the constitutive relations
presented below) are valid locally. Let the fluid density be
sufficiently large, so that the volume fraction is everywhere
above the melting point. There are two possible phases here.
One of them is the disordered phase (the metastable branch
in Fig. 1), the other one is the crystallized phase. Each of the
two phases, disordered and ordered, can have inhomoge-
neous temperature and density profiles, without violating the
constancy of the pressure. Furthermore, domains of disor-
dered phase can in principle coexist with domains of the
ordered phases (again, without violating the constancy of the
pressure). Shear-induced crystallization apparently repre-
sents a (nonequilibrium) phase transition, so that the meta-
stable disordered branch gives way, everywhere, to the stable
ordered branch.

This work addresses very dense flows, where the volume
fraction is close to that of the crystalline close packing,
Drec—P<o.. We assume that the ordered crystalline
branch of the phase diagram (see Fig. 1) has already won in
the competition with the disordered branch. To describe a
flow in this phase, one needs hydrodynamic equations. These
represent the mass conservation

061301-2



SHEAR-INDUCED CRYSTALLIZATION OF A DENSE...

d
&V .v=0, (1)
dt

the momentum conservation

dv
—=V.P s 2
ndt +ng (2)

and the energy balance

3.dT

= V-Q+P:Vv-T, (3)
where I' is the energy loss rate due to the inelasticity of
binary collisions. Here n(r,f) is the number density of
grains, T(r,1) is the granular temperature, v(r,7) is the mean
flow velocity, P is the stress tensor, g is the gravity accelera-
tion, Q is the heat flux, and d/dt=0d/dt+v-V is the total
derivative. In the following we will put the particle mass to
unity. The stress tensor P can be written as follows:

P=[-p(n,T) + un,Dt(D) ]I + 2 5(n,T)D, (4)
where
D = (1/2)[Vou + (Vu)T] (5)

is the rate of deformation tensor,
A 1
D=D- 5 tr(D)I (6)

is the deviatoric part of D, and I is the identity tensor. We
assume that the heat flux Q is given by the Fourier law

Q=-«(n,T)VT. (7)

Similarly to dilute [13] and moderately dense [14] rapid
granular flows, there can be an additional term in Eq. (7),
proportional to the density gradient. This term must vanish as
r—1, and it can be neglected in the nearly elastic limit ¢
<1 that we are interested in throughout this paper.

To make the formulation complete, one needs constitutive
relations: the equation of state p=p(n,T) and the dependence
of the transport coefficients u, 7, and «, and of the energy
loss rate I' on n and 7. For small and moderate densities,
these relations can be derived from the Boltzmann or Enskog
equation, properly generalized to account for inelastic colli-
sions [2,3]. For very large densities, that we are interested in,
one can use free volume arguments [15]. The resulting equa-
tion of state is

2
n.T

9
n.—n

pP=pi (8)
where n.= \2/d3 is the particle number density at close pack-
ing, and p, is a numerical factor of order unity. Here and in
the following we will write n, instead of ny,. (face-centered
cubic). The temperature dependence in Eq. (8) is exact. We
assume that all transport coefficients (except for the shear
viscosity 7, see below), diverge like (n,—n)~! near the close-
packing density [9]. Therefore, one can write the bulk vis-
cosity coefficient w(n,T), the thermal conductivity (n,T),
and the energy loss rate I'(n,T) in the following form:
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nTl/Z
— —_—c
M_Ml(nc—n)dz’
n,T"?
K= Kl(nc_n)dz,
243/2
n.T
r=r,(1-/»———. 9
(=P (9)

Equations (9) are valid in the limit n.—n<n,. The tempera-
ture dependences are exact. The numerical factors w,;, i,
and I'; are of order unity and presently unknown; they can be
found in MD simulations. The same type of divergence of
the transport coefficients (again, except for the coefficient of
shear viscosity 7) was assumed in Ref. [10], but in the vi-
cinity of the random close-packing density.

There is a recent evidence in the literature that the shear
viscosity coefficient 7 of elastic hard disk fluid grows faster
with the density, at high densities, than the rest of the trans-
port coefficients [16]. We believe that this behavior remains
qualitatively correct also for three-dimensional systems.
Bocquet et al. [10] accounted for this fact in their description
of the plane shear flow near the random close-packing den-
sity. They proposed, by analogy with the behavior of super-
cooled liquids above the glass transition, that the shear vis-
cosity coefficient diverges at random close-packing density,
but with a larger exponent: 77~(n,cp—n)‘ﬁ, B>1. In our
model of a crystallized shear flow we suggest a different
approach. We will accommodate a recent finding of Luding
et al. [16] that the shear viscosity coefficient diverges like
(n.—n)~" at a density n,<n,:

n=m (10)
n.—n

where 7; is a numerical factor of order unity, which is pres-
ently unknown. Divergence of the shear viscosity implies
that the fluid is jammed on a macroscopic length scale.
While a shear flow in a macroscopically jammed system is
impossible, the system of hard spheres may still have finite
temperature, pressure, heat conduction, and collisional en-
ergy loss.

There are arguments in the literature (see, e.g., Santos ef
al. [17]) that steady sheared states of granular fluids are in-
trinsically non-Newtonian (that is, they require a description
beyond Navier-Stokes order). Why are such effects not in-
cluded in our description? The reason is that non-Newtonian
effects arise when one treats the inelasticity of particle colli-
sions in a nonperturbative way (postulating that the Boltz-
mann equation, generalized to inelastic collisions, remains
applicable for finite inelasticity). In this paper we work in the
limit of nearly elastic particle collisions. In the first order in
the inelasticity one does not need to take into account any
inelasticity corrections to the transport coefficients (for ex-
ample, to the shear viscosity). The only place where the in-
elasticity enters in this leading-order theory is the inelastic
loss term I' in the energy equation (3).
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III. STEADY SHEAR FLOW CLOSE TO
CRYSTALLIZATION

Now let us introduce the flow setting we will be dealing
with in the rest of the paper. We consider a plane Couette
geometry. The model system is infinite in the horizontal (x)
direction and driven by the upper wall y=H that moves hori-
zontally with velocity u,. The lower wall y=0 is at rest (of
course, in the absence of gravity the upper and lower walls
are interchangeable). The height H of the layer in this setting
is not fixed. Instead, the upper wall is maintained at a con-
stant pressure Py, as in a recent experiment by Gollub’s
group [5]. As already mentioned above, we assume a very
dense flow, so that the volume fraction is close everywhere to
that of close packing: ¢y..— b <y,

As we consider a steady horizontal motion, the number
density n, the granular temperature 7, and the horizontal ve-
locity u depend only on the vertical coordinate y. Then it
follows from the y component of the momentum equation (2)
that the pressure is constant throughout the system:

p(y) = Py. (11)

Now we write down the x component of the momentum
equation (2) and rewrite the energy balance equation (3):

i),
dy 77dy o

d( dr du \?
E(KE>+7]<5> -I'(n,7)=0, (12)

where the constitutive relations are given by Egs. (8)—(10).
Equations (8)—(12) must be complemented by boundary con-
ditions. We will assume rough walls and no-slip boundary
conditions for the horizontal velocity: u(y=0)=0, u(y=H)
=uy. The problem of evaluation of the granular heat flux at
the rough walls was addressed by Chou [18]. He considered
a model where inelastic spheres were driven by walls with
attached half-spheres (bumpy walls.) Extending an earlier
treatment by Richman [19], Chou calculated the heat flux
and the slip velocity at the boundaries. He showed that the
heat flux at the boundaries can be positive or negative, de-
pending on whether the “slip work™ is larger or smaller than
the energy loss due to inelastic particle collisions with the
walls. For some values of parameters the total heat flux to
the boundaries vanishes [18]. For simplicity, we will assume
a vanishing heat flux and therefore prescribe dT/dy(y=0)
=dT/dy(y=H)=0. The total number of particles is con-
served, which yields a normalization condition for the den-
sity: [in(y)dy=N, where N is the number of particles per
unit area in the xz plane.

Let us rescale the vertical coordinate y by the (a priori
unknown) system height H, the horizontal velocity u by the
upper plate velocity u, the density n by the close-packing
density n,, and the temperature 7 by the ratio Py/n, of the
constant applied pressure and close-packing density. Rewrit-
ing the equations in the scaled form, we obtain

T,
pll—n_ ’
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d( T2 du)
— — ] =0,

E 1-N-ndy
i( T1/2 d_]") ﬂ MT]/Z (@)2 52RT3/2_0
dy\1—-ndy ki 1=N—-n\dy kK 1—n S
(13)

where M =n, u%/Po is the square of the effective Mach num-
ber of the flow, and A=1 —nj/ n. is a small positive numerical
factor. For simplicity, the three presently unknown constants
p1=0(1), 5/k;=0(1), and I';/k;=0(1) are taken to be
unity in the following. As the system height is unknown a
priori, the scaled quantity R=(1-r*)H?/(2d*) must be deter-
mined from the solution of the problem. From the first of
Egs. (13) we find a simple relation between the scaled den-
sity and temperature: T(y)=1-n(y). Then, introducing a con-
venient auxiliary variable e(y)=[1-n(y)]"><1, we rewrite
the remaining Egs. (13) as

du 2e€ -\
—=\/= ; (14)
dy M €
d’e e\
d—y2+(C—R)6—:=O, (15)

where ¢ is an unknown constant to be found from the solu-
tion of the problem. The boundary and normalization condi-
tions are

u(y=0)=0, u(y=1)=1,
de de

I =0 = =1 =0’
dy(y ) dy(y )

! f
fo[l—e(y)z]dwm, (16)

where f=(1-r>)">Nd?/ 2. The steady flow equations
(14)—(16) include two (known) scaled parameters: M and f.
There are five unknown parameters in the problem: ¢, R, and
three arbitrary constants which determine the solutions of the
ordinary differential equations (14) and (15) for u(y) and
€(y), respectively. Correspondingly, there are five conditions
(16) to determine the unknown parameters. In the following,
when solving the equations numerically, we put A=0.05.
Before we get into a detailed description of the steady
flow solutions of Egs. (14)—(16), here is an overview of the
results. Strikingly, there is an infinite number of steady flow
solutions. They all can be parametrized by three parameters:
the scaled numbers M and f and an integer number m
=1,2,.... For a fixed m, there are three possible types of
solutions in different regions of the phase diagram (M ,f)
(see Fig. 2). The simplest solution is the uniform, or linear
shear flow that exists for any values of M and f. Here the
velocity gradient, density and temperature are all constant. In
region B (between the solid and dashed lines of Fig. 2), there
is an additional one-phase solution: the one with nonlinear
profiles of density, temperature, and velocity. Finally, there is
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Region A

(a) 0 1 2 3

Region B ‘

Region C

(b) 2 f 4

FIG. 2. Hydrodynamic phase diagram of the steady flow solu-
tions for m=1 (the upper panel) and m=2 (the lower panel) in terms
of the scaled parameters f and M. In regions A there are: a
multilayer flow and an (unstable) uniform flow. In regions B there
are: a multilayer flow, a nonuniform flow, and an (unstable) uniform
flow. In region C there is only a (stable) uniform flow. In the for-
bidden regions the granulate is not dense enough for our theory to
be valid. Plausible bifurcation diagrams, corresponding to the dot-
ted arrows f=2, are shown, for the cases of m=1 and m=2 in Fig.
7.

a multilayer two-phase solution which exists in regions A
and B, that is below the dashed line. The flow there is orga-
nized in several distinct layers. In the “solid-phase” layers
the density is larger than the critical density n: at which the
shear viscosity diverges. Therefore, these layers move as a
whole with a velocity u=const, while the temperature and
density profiles are nontrivial. In the “fluid phase” layers
there is a mean flow with nontrivial profiles of the velocity,
temperature, and density. The density, temperature, heat flux,
and velocity are continuous at the interface between the lay-
ers. This means in particular, that there is no macroscopic
flow in the bottom layer of the granulate, and the inelastic
energy losses there are balanced by the conduction of heat
from the (flowing) top layer.

Now let us consider these solutions in more detail. We
start with the simplest one: the uniform shear flow. Here € is
independent of y, and Eq. (15) yields

Substituting this value into Eq. (14) and integrating in y, we
obtain a linear velocity profile
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2\
u(y)=R\/my- (17)

Using the normalization condition and the condition u(y
=1)=1, we obtain

o f 2\R?
= and c¢=R+
c—R R

1- (18)

Solving these two algebraic equations, we calculate R

P M(l—)\)( 2M(1—)\))”2]
R‘z(l—x)z{“ £\

(19)

and obtain the scaled velocity profile and the constant value
of e

up(y) =y,

. (1—)\)](1 172
1+k +(1+2k)"2 ]|

(20)

€= €Ex=

where k;=M (1-\) f~2. Notice that e. always satisfies the
condition €>\"2 or, in the original variables, n<n:: the
density of the uniform flow is smaller than the critical den-
sity at which the shear viscosity diverges. Note also that
although the uniform shear flow solution [Eq. (20)] formally
exists everywhere, the assumption e€<<1 demands k;<<1.
Therefore, the solution is valid for M <f2/(1-\). This in-
equality breaks down in the forbidden regions of the phase
diagram (see Fig. 2).

The nonlinear solution, which exists in region B, can be
found numerically. We used the following numerical proce-
dure, realized in MATLAB. Let us denote €,=e(y=0). For
fixed R and f, we first solve Eq. (15) by varying parameters
€ and ¢ and demanding de/dy(y=1)=0 and the normaliza-
tion condition. This procedure yields e(y). Then we solve Eq.
(14) and find the velocity profile u(y) and the corresponding
value of parameter M from the condition u(y=1)=1.

An important insight into the nature of this solution is
provided by a mechanical analogy following from Eq. (15).
Let € be a “coordinate”, while the vertical coordinate y is
“time.” Then Eq. (15) describes a Newtonian particle oscil-
lating in the potential well U(€)=(1/2)(c—R)€&*—c\ In €. The
boundary conditions select a family of solutions. A typical
solution includes an integer number m of halves of the oscil-
lation period, and a completion of these oscillations takes the
system a unit “time”, m7/2=1 [see Eq. (21)], where 7 is the
oscillation period. Figure 3 shows an example of a particle in
the potential well, while the resulting spatial profiles of €(y),
u(y), and n(y) for one-half of a full oscillation
(m=1), and for a full oscillation (m=2), are shown in Fig. 4.

At a fixed m, this solution exists in region B of the phase
plane of parameters f and M. This region is limited by two
curves M=M(f) (see Fig. 2). The first curve is obtained as
one approaches the bottom of the potential well. Here the
oscillation amplitude (that is, the density contrast in the sys-
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0.9
Region B

0.8 :
0.2 c 0.4 0.6

FIG. 3. The mechanical analogy for Eq. (15). Shown is a trajec-
tory (the dashed line) of a classical particle in the potential well
U(e) (the solid line; see text) which corresponds to regions B in Fig.
2. See Fig. 4 for the resulting spatial profiles, which correspond to
one-half of the oscillation (m=1) and a full oscillation (m=2, here
the potential changes as the parameter M is different). The oscillat-
ing solutions exist only inside the potential well, and only for €(y
=0)>\"2, when the density is everywhere below the critical den-
sity at which the shear viscosity diverges. The parameters for this
figure are M=0.5158 and f=2.

tem) vanishes. Expanding the potential U(€) near the bottom
of the potential well e=[c\/(c—R)]"?, we can calculate the
oscillation period 7:

2 2 1/2
T=—=7T< R) . (21)
m C—

The bottom of the well corresponds to a uniform shear flow,
but Eq. (21) must be obeyed arbitrarily close to the bottom of
the well. Using Eq. (21) and the second equation of Egs.

0.28
0.35 0.6
w
@03 0.24
0.22
0.25

0 05 Y 1 0 05 Y 1

1 1

S 05 = 05

0 0
0 05 Y 1 0 05 Y 1

0.95 0.96
= 09 S 0.94\/

0.85 0.92
0 05 Y 1 0 05 Y 1

FIG. 4. The profiles of e(y)=[1-n(y)]"? (the upper row), the
scaled velocity u(y) (the middle row), and the scaled density n(y)
(the bottom row), which correspond to region B in Fig. 2. The
profiles in the left column (respectively, in the right column) corre-
spond to m=1, one-half of a full oscillation (respectively, to m=2, a
full oscillation) in the potential well (see Fig. 3). The parameters are
f=2 and M=0.5158 (the left column), and f=2 and M=0.1050 (the
right column).
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(18), we obtain R=(mw/2)(M/N\)"? and c=R+m?>7/2. Sub-
stituting it into the first equation of Egs. (18), we obtain the
lower boundary of region B in terms of f and M:

_(mm 12 M 1/4 ()\M)l/2:|
-] e

For m=1 and m=2 these curves are shown by the solid lines
in Fig. 2. They determine the boundary between the regions
A and B for each m.

The second limiting curve (plotted by the dashed lines in
Fig. 2 for m=1 and m=2) is obtained numerically by putting
€=N"? (see Fig. 3). This curve determines the boundary
between the regions B and C.

Now let us consider the most interesting multilayer two-
phase family of solutions, parametrized by the same number
m=1 that now can be associated with the number of “solid”
layers. Due to continuity of the velocity field, there is no
macroscopic flow in the bottom layer of the granulate for any
m, while the inelastic energy losses there are balanced by the
heat conduction from the fluidlike top layer. A typical flow
here consists of m zero-shear (solidlike) layers, each of
which is moving as a whole, separated by fluidlike regions.
As we are dealing with a hard-sphere model, the granulate is
fluidized within the solid layers: the granular temperature is
nonzero, and there is energy flow through the boundaries of
the layers. Let us first consider the m=1 solution. Here the
only solidlike layer is at the bottom, and it is at rest. Putting
c=0 in Egs. (15) and (14) we obtain e(y)=e¢, cosh(R"?y).
The height of the bottom layer is determined from the con-
dition e(h)=\"2. At the interface between the two layers we
demand continuity of the density (and, therefore, of the tem-
perature), of the heat flux, and of the velocity. Similarly to
the procedure performed in region B, we solve the problem
numerically by shooting in two parameters €, and ¢ (for the
top layer) for fixed values of R and f, and then calculate the
profiles and the respective value of the parameter M. Typical
profiles €(y), u(y), and n(y) for m=1 are shown in Fig. 5, the
left column. A multilayer solution m>1 is obtained in a
similar way, by demanding that the velocity in any solid
layer is constant, while the density, temperature, heat flux,
and velocity are continuous at all interfaces between the lay-
ers. Typical profiles of e(y), u(y), and n(y) for m=2 are
shown in Fig. 5 (the right panel).

At this point let us return, for a moment, to the case where
the viscosity singularity is assumed to be at the same density
n. as the rest of transport coefficient. In this case A=0, and
the only possible solution is a uniform shear flow. Indeed, as
€ must be positive, the only acceptable solution of Eq. (15)
with A=0, which obeys the no-flux boundary conditions, is
e=const and c=R. Then the normalization condition [the last
of Egs. (16)] yields €=1-f/R"?. One can obtain this solu-
tion directly by putting A=0 in Eq. (20). Therefore, the as-
sumption of a nonzero \ [the specific form of viscosity di-
vergence, Eq. (10)], is crucial for the existence of nontrivial
solutions.

One can see that, at fixed m, two different kinds of steady
flow solutions exist in region A, for the same values of pa-
rameters M and f. Furthermore, three different kinds of
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two-phase solution, for m=1 (the left column) and m=2 (the right
column). The solutions for the fluid (solid) layers are shown by the
solid (dotted) lines. The parameters are f=2 and M =0.0492 (the left
column), and f=2 and M=0.101 48 (the right column.)

steady flow solutions exist in region B, again for the same
values of parameters M and f (see Fig. 2). What is the selec-
tion rule for these solutions? We give a partial answer to this
question in the next section by performing a linear stability
analysis of the uniform dense shear flow. Then we suggest
plausible bifurcation diagrams of the system for different m.

IV. LINEAR STABILITY AND BIFURCATIONS

Our linear stability analysis of the uniform flow deals
with the full set of (time-dependent) hydrodynamic equations
(1)=(3) and constitutive relations (8)—(10). The details of lin-
ear stability analysis are shown in the Appendix. Adding
small perturbations to the uniform shear flow and linearizing
the equations, we finally arrive at a quadratic characteristic
equation for the growth/damping rate I' as a function of the
parameters and the wave number k [Eq. (A.4), see the Ap-
pendix.] The two roots of this equation are real and corre-
spond to two different collective modes of the system. One
of them always decays. The other one is a purely growing
mode for sufficiently small k, that is for long-wavelength
perturbations. At small & we obtain:

2R2NK?

= >0, 23
MLe(M + f R"?) 23)

where L=(2M)"?H/d. For sufficiently large k, I is negative:
the heat conduction suppresses the instability. The critical
wave number for the instability is k==2RN"2/M"2. The de-
pendence of the scaled growth rate I" on the scaled wave
number k is shown in Fig. 6.

Using Eq. (19), we obtain
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k

FIG. 6. The scaled growth rate I', calculated from Eq. (A.4),
versus the scaled wave number k. The long-wavelength modes with
k <k« (the value of k is indicated by the asterisk) are unstable. The
parameters f=2, M=0.2, A\=0.05, and L=100 correspond to region
A in Fig. 2(a) and to region C in Fig. 2(b).

e
112
X {1 +—M(;2_)\) + (1 +—2M(;2_)\)> ] (24)

Notice that the time scale separation, employed here for the
reduction of the order of the dispersion equation (see the
Appendix), breaks down when e. approaches A\!/2. As one
can see from Eq. (20), this happens, for a fixed f, when M
becomes sufficiently small. Importantly, the final results (23)
and (24) remain valid in the general case, as we obtained
from the full, unreduced fourth-order dispersion equation for
I'(k).

The wave number k of the perturbation is quantized by the
boundary conditions. Indeed, the velocity perturbations must
vanish at the upper and lower plates: u;(y=0,1)=u;(y=1,1)
=v,(y=0,1)=v,(y=1,1)=0. These conditions yield a discrete
spectrum of wave numbers: k=mm, where m=1,2,3,....
Therefore, the instability threshold is k«=7r. This equation
determines a curve f(M) on the (f,M) plane. One can see
that this curve coincides with the curve f(M) determined by
Eq. (22) for m=1: the borderline between regions A and B in
Fig. 2. Similarly, the threshold for m=2 perturbation k-
=2 coincides with the curve f(M) determined by Eq. (22)
for m=2, and so on. This is not entirely surprising: as the
instability is aperiodic, its threshold is provided by the mar-
ginal stability condition. It is convenient to characterize each
steady flow solution by the maximum density contrast it pre-
dicts. In terms of the auxiliary variable €, we can define & as
the maximum change in e throughout the system [for m=1
this gives d=e(y=1)-€e(y=0).] We can calculate & as a
function of parameters f and M for each steady flow solu-
tion. Figure 7 shows all the resulting branches of the solution
(for m=1 and m=2) for a fixed f, while M serves as a control
parameter. Furthermore, there is an infinite number of bifur-
cation diagrams for multilayer solutions (for all integers m
> 1), which can be computed in a similar way.

In order to determine the bifurcation diagram of the sys-
tem at a fixed m, one needs to perform a linear stability
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FIG. 7. Conjectured bifurcation diagrams of the steady flow for
f=2 and A=0.05. Shown is the density contrast & versus M for
different steady flow solutions for m=1 (the upper panel) and m
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cated by the solid and dashed lines, respectively. We proved that the
uniform flow (5=0) is unstable at M < M+. The dash-dotted line in
the upper panel is the asymptote of the branch bifurcating from the
point M=M.: 6=0.9856---(M—M.)"2.

analysis of each branch of the solution. Unfortunately, such
an analysis is quite cumbersome for the solutions with &
# 0. It is natural to assume that bifurcation, which occurs in
the vicinity of the point M =M., at which the uniform shear
flow (the one with 6=0) changes from unstable [at M
<M.(f)] to stable [at M>M.(f)], is an inverse pitchfork
bifurcation. Based on this assumption, we obtain a simple
bifurcation diagram, presented in Fig. 7. The stable solutions
are indicated by solid lines, the unstable solutions by dashed
lines. Let us consider the case of m=1 and follow the uni-
form shear flow solution (for which 6=0) as M increases,
starting from a small value, at fixed f. We pass from region A
to region B of the hydrodynamic phase diagram (see the
dotted arrow in Fig. 2) via an inverse pitchfork bifurcation.
Here the uniform shear flow solution becomes stable, while
the bifurcating “second solution” (the one with nonlinear
density and velocity profiles) must be unstable. Exploiting
the mechanical analogy (see Fig. 3), we can find the asymp-
tote of the unstable branch in the close vicinity of the bifur-
cation point: d=A(f)(M—M-)"2. Now let us move along the
unstable branch 6+ 0 and increase M. At some critical value
of M, which depends on f, we reach the border between
regions B and C. Here the unstable branch ends, as for larger
M (region C) the only possible solution is the uniform shear
flow. There is, however, another solution which exists at
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smaller M. Figure 7 shows this stable branch which corre-
sponds to the two-phase solution in regions A and B (see Fig.
2). This simple scenario predicts bistability at sufficiently
small values of the parameter M, and a hysteresis on the
interval [M(f),M,(f)], see Fig. 7. Note that the parameter L
does not affect the bifurcation diagram, it only sets the time
scales of transient motions in the system.

V. SUMMARY AND DISCUSSION

We have considered here some aspects of shear-induced
crystallization in a dense but rapid monodisperse granular
shear flow. We focused on a steady crystallized flow under a
constant pressure and zero gravity. Assuming very high den-
sities, n.—n<<n., we employed a version of the Navier-
Stokes hydrodynamics for inelastic hard sphere fluid with ad
hoc constitutive relations based on the free volume argu-
ment. In contrast to earlier works on rapid granular shear
flow, we assumed that the shear viscosity coefficient 7 di-
verges at a density smaller than the close-packing density 7.,
while the rest of the constitutive relations diverge at n=n,.
We have determined the phase diagram of the steady flow in
terms of three parameters: the effective Mach number, the
scaled inelastic energy loss parameter, and an integer number
m. In a steady flow the viscous heating of the granulate is
balanced by energy dissipation through inelastic collisions.
This balance is achieved, in different parts of the phase dia-
gram, in different ways, producing either a uniform shear
flow (with constant velocity gradient, density, and tempera-
ture), or a flow with nonlinear velocity, density, and tempera-
ture profiles. In some regions in the phase diagram two or
three different steady flow solutions are possible for the same
values of the parameters. We performed a linear stability
analysis of the uniform flow, and suggested a plausible bifur-
cation diagram of the flow at a fixed m, which predicts bi-
stability and hysteresis. We are unable as yet to find a selec-
tion principle that would prefer certain steady state solutions
out of a multitude of solutions at different m. This nontrivial
selection problem should be addressed in future work.

One of the predictions of this work is the existence (and,
we conjecture, stability) of two-phase solutions. The simplest
solution of this type consists of a zero-shear (solidlike) layer
at the bottom and a flowing top layer. Though there is no
mean flow in the bottom layer, the particles there undergo
“thermal” motion, and the granular temperature and pressure
are nonzero. As a result, there is energy transfer through the
bottom layer. There also exist two-phase multilayer solu-
tions, where solidlike layers, each of which is moving as a
whole, are separated by fluidlike regions with nonlinear ve-
locity, density, and temperature profiles. The existence of
these solutions is a direct consequence of our assumption
that the coefficient of shear viscosity 7 in Eq. (10) diverges
at a density which is smaller than the close-packing density
ne.

A comparison of our results with those of Alam and co-
workers is in order now. Alam er al. [20] investigated a plane
Couette shear flow of inelastic hard sphere fluid, in a system
with a fixed height, in a wide interval of densities: from the
dilute limit to the random close-packing density. They em-
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ployed constitutive relations, all of which (including the vis-
cosity) diverge at the random close-packing density n,. They
found instability of the uniform shear flow when the inelas-
ticity of the particle collisions becomes large enough or, al-
ternatively, when the (fixed) system height exceeds a critical
value for a fixed inelasticity. The uniform shear flow insta-
bility considered in our work is quite different: it requires
viscosity divergence at a smaller density than the rest of the
constitutive relations. Indeed, Egs. (22) and (24) show that
this instability disappears when N\ goes to zero. Although the
parameter N\ was identically zero in Ref. [20], instability was
observed. Where does the difference come from? To remind
the reader, the constitutive relations that we used assume a
very dense system. Respectively, our results are valid only at
leading order in the parameter (n,—n)/n.. We checked that,
if one takes into account only the leading order terms in
(n,—n)/n, in the equations of Alam er al. [20], the instability
disappears.

It is worth mentioning that the steady flow equations
(14)—(16) would not change if the crystal close-packing den-
sity n. were replaced by the random close-packing density
n,. Such a formulation would follow from the assumption
that the shear viscosity diverges at a density smaller than n,.
It would predict a variety of steady state solutions on the
metastable branch, in the vicinity of the random close pack-
ing. We hope that the basic assumptions of our model (in-
cluding the specific form of viscosity divergence) and its
nontrivial predictions will be tested in MD simulations and
in experiment on dense but rapid granular flow. Our work
focused on a dense but rapid granular flow, assuming that the
granulate is fully fluidized. In experiment it should be easier
to achieve this regime when the shear is very large, so that
the effective Mach number is of order unity (see Fig. 7.)
Most experiments with dense granular flows are performed
with slow flows, where the effective Mach number is small.
For example, in the experiment of Gollub’s group [5] the
parameter M was about 5 X 107, In this regime the particles
far from the moving boundary are in persistent contact with
each other [5], interparticle friction is important (see also
[21]), and the model of inelastic hard spheres (and the
Navier-Stokes hydrodynamics) is inapplicable.

In general, the model of inelastic hard sphere fluid is con-
sidered as a good approximation for dilute and moderately
dense flows. Its validity range for dense flows is not well
known [3]. Indeed, the particle collision rate increases with
the density, so the assumption of instantaneous collisions,
intrinsic in the model of hard spheres, may become restric-
tive at high densities. Being aware of this limitation, we still
believe that the model of inelastic hard spheres can capture
some of the physics of dense flow. As in many other prob-
lems, it is useful to push this model to an extreme and ana-
lyze its predictions (some of which being quite unexpected
as we have shown) in detail. We notice in passing that the
two-phase flow predicted in this work resembles experimen-
tally observed shear bands: localized regions of ordered
granular flow, coexisting with essentially immobile solidlike
regions [22].

The future experimental and theoretical work should elu-
cidate the exact conditions under which shear-induced crys-
tallization develops in granular flows. Though crystallization
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under shearing is well documented in MD simulations [7,8],
a recent experiment [23] showed that, under certain condi-
tions, shearing can lead to disorder.

Finally, we did not attempt to describe in this work the
shear-induced crystallization process. Such a description is
beyond the reach of theory at present. A promising approach
to this problem should deal, in addition to the hydrodynamic
fields, with an order parameter field and its dynamics. For
slow granular flows such a description is now emerging [24].
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APPENDIX: DETAILS OF LINEAR STABILITY
ANALYSIS

Let u and v be the velocity components in the x and y
directions, respectively. We assume that the small perturba-
tions to the uniform steady shear flow do not break the sym-
metry of the flow in the x and z directions:

n(y,t) =ng+ny(y,1),
T(y’t) = TO+ Tl(y’t)’
u(y,1) =up(y) +uy(y,1),

v(y.0) =v,(y.1), (A.1)

where index O denotes the uniform steady shear flow, see
Eqgs. (20), while Ty=1-ng=€. Linearizing the hydrody-
namic equations with respect to small perturbations, we ar-
rive at

< (?l/ll du()) Jd T(l)/z (3u1 ( T]
Lng| — +v,— |=—y———| — +| —
ot dy dy (1 =N=—ngl dy 2T,
+L>%} ,
1—)\—}10 dy
d, Lap, 0 (T(])/Z 4T )&vl
Lhgy—=———"—+— + — 1,
ot M dy dy[\l1-ny 3(1-N=ng)/ dy

dy  dy 1—-ng dy 1-N—ngdy dy

(Tl ny )(du0>
|\ —+——— || —
2Ty 1-N-ny/\ dy
2RT3’2<3Tl n )
—o (=1, 1
2T0 l—l’l()

(A.2)

l—no
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where L=(2M)"?H/d, the time is measured in the units of
H/ug, and the value of H is determined by the unperturbed
flow, that is by the uniform steady flow solution. One can
check that the new parameter L (which is absent in the steady
state problem, but enters the linear stability analysis), is fully
determined by the scaled parameters f and M and by the
restitution coefficient r.

A further simplification employs time scale separation.
Let us compare the characteristic time scales of the problem.
The acoustic time scale is 7,=He:/(Py/n.)"?, the heat con-
duction time scale is 7,=7,(H/d), the energy loss time scale
is 7y=7[H/(dR)], and the viscous time is 7,=7,(H/d)(€
—\)/ €. If the density is not too close to the density at which
the shear viscosity diverges, that is if (H/d)(e€2-\)/&>1,
one can separate the different time scales and eliminate the
(acousticlike) fast modes. This is equivalent to the assump-
tion that the perturbations evolve in pressure equilibrium
with the surroundings [25]. Using the condition dp,/dt=0
instead of the full momentum equation [the third equation in
Egs. (A.2)], we obtain T)=-n,. Then, differentiating the sec-
ond equation of Egs. (A.2) with respect to y and substituting
dv,/dy from the first equation of Egs. (A.2), we arrive at

9(dm __m

L(l_é)&t<f?y 1—e§>
2l e o n ny
Tt 2-nay \T22 e[

_L@{w—e@ ;}

—+
ot 2 1-&

r?(lé’nl) Me: 2(9u1 ( n n )
=——|5— |+ —+|-—=+

ay\e dy ) -\ ay 26 €-\

R”ll

+ =0,

€
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where we substituted duy/dy=1 and Ty=1-ny= €. Consider
a single Fourier mode of the perturbation:

n(y,t) = exp(I't + iky),

uy(y,1) = u exp(I't + iky),

where k is the wave number. Looking for nontrivial solu-
tions, we obtain

det(A) =0, (A3)
where the elements of the matrix A are
4Rek> Rk

M?*  Me’

A]]Z—FL+

_TLkf  2Rek’

3f R\ K 4R’
Ay =TL +—|+—+ ,
€ M
A22 = 4kas< .
Equation (A.3) yields a quadratic equation for I':
al?+al+ay=0, (A.4)
where the coefficients are

3 2
a2=Lk2<l+%),

+

+fR1/2)
M Mf

L% (

3RE 2RE
+ R"e. )

a; = 4RLk€4<<1
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